Determination of Root Distribution, Dynamics, Phenology and Physiology of Almonds to Optimize Fertigation Practices

Andres Olivos, Patrick Brown, Blake Sanden University of California, Davis

Managing Nitrogen in Perennial Crops

Supply (Rate)

Demand (Amount and Timing)

253 giga Ton

66% of applied N is not present in the harvested crop and is at risk for loss.

Legislative Response: Mandated Nitrogen Management Planning

- Application rates will be based upon field specific crop N budget demand (replace off take) and accounting for all sources of N (irrigation, OM, soil residual N).
- Certified Crop Advisor sign off required.
 - Training Requirement
- Post season verification and reporting.
 - Collated and Managed by Local Water Coalitions

To achieve optimal productivity with restricted nitrogen will require enhanced efficiency of N use.

Optimal Fertilization Practices

Main goal = Match supply with demand

Determining Nitrogen Demand in Trees

(Californian data for Almond, Pistachio, Walnut, Grape, partial for Prune)

Nitrogen Dynamics (12th leaf tree 4,800 lb.)

Total and Annual Dynamics of N in Mature Almond (data from 11-12 year old trees 4,800 lb)

80% of perennial tissue is above ground.

Between 10 and 20 lbs. N per acre per year for new perennial above ground growth.

Rate and Time of Uptake

- From dormancy to mid-leafout there is very little N uptake.
- Nitrogen stored in perennial tree parts is used to provide N for flowers, fruits, leaves and new roots.
- Uptake commences at mid-leaf out and is essentially complete by hull split.

Perennial N: (12 year old 90% full canopy trees)

- 450 lb N/acre in dormant perennial organs in January (includes labile stored N)
- 420 lb N/acre in perennial organs in March (30 lb N acre remobilized).
- 35 lb accumulated in perennial N over 12 months (50% from leaf remobilization).

When Does New Root Growth Occur?

What is the pattern of root growth?

Prune 2012

Walnut (1977, 1998

Leaf fall

Peach 1989

JUNE

MAY

AUG.

SEPT.

Fruit Shoot

INCREASING GROWTH RATE

What is the pattern of root growth?

Project Settings

- High producing 13 year old Orchard in Kern County
- Nonpareil/Monterey
- 87 trees/ac

Root phenology

05/03 05/16 06/01 06/14

New Root Growth: Almond

Total 'Active' Root Length: Almond

Root Growth Walnut

Root distribution

Root Uptake

Uptake Estimation

 $I = \frac{I_{\text{max}}(C_s - C_{\text{min}})}{K_m + (C_s - C_{\text{min}})}$ External concentration (C_S)

- I = Influx
- $I_{max} = Maximum influx$
- C_s = Soil solution concentration
- C_{min} = Minimum concentration
- $K_m = Michaelis-Menten constant$

N-NO3 Uptake on Almond Roots

External Nitrate Concentration (ppm)

Summary: Root Growth

- New root growth commences during late bloom and continues through full leaf out
- Peak root activity occurs during nut-fill then diminishes as nuts approach harvest.
- A small peak of new root growth occurs in early winter in some years.
- The vast majority of active roots were found in the 0-18" depth, which in this
 orchard was the depth of soil wetting during an irrigation event.
- Uptake of nitrate by roots is influenced by nitrogen rate provided. The ability
 to uptake N from low N soils is diminished in trees that are rich in N, while the
 rate of uptake of N is enhanced at high soil N values in trees that are rich in
 N.

How does the schedule and type of fertigation influence N leaching and uptake?

Treatment description

Treatments		K Source (%)				N Source (%)	
Treatments	SOP	KNO3	KCl	KTS	KNO3	UAN	
F300-75KN-125 SOP	62.5	37.5	0	0	9	91	
C300-200SOP	100	0	0	0	0	100	
C300-75KN	62.5	37.5	0	0	9	91	
C300-200KN	0	100	0	0	36	64	

F= Fertigated in 4 seasonal applications in Feb, Mar, Jun and Sept.

C= Fertigated in every irrigation event.

Measurement of Nitrate in soil following irrigation utilizing a suction lysimeter.

First Fertigation at 30 cm

- F= Fertigated in 4 seasonal applications in Feb, Mar, Jun and Sept.
- C= Fertigated in every irrigation event.

First Fertigation at 60 cm

- F= Fertigated in 4 seasonal applications in Feb, Mar, Jun and Sept.
- C= Fertigated in every irrigation event.

First Fertigation at 90 cm

- F= Fertigated in 4 seasonal applications in Feb, Mar, Jun and Sept.
- C= Fertigated in every irrigation event.

Second Fertigation at 30 cm

F= Fertigated in 4 seasonal applications in Feb, Mar, Jun and Sept.

C= Fertigated in every irrigation event.

Second Fertigation at 60 cm

F= Fertigated in 4 seasonal applications in Feb, Mar, Jun and Sept.

C= Fertigated in every irrigation event.

Second Fertigation at 90 cm

F= Fertigated in 4 seasonal applications in Feb, Mar, Jun and Sept.

C= Fertigated in every irrigation event.

Conclusions

- There is a large variability in NO3 concentration within the samples.
- Continuous fertigation treatments reduce NO₃
 concentration at all depths and times.
- If deep leaching does not occur, N supplied from infrequent fertilization events can be recovered.
- Soil solution sampling is highly variable and difficult to obtain from dry soils.

How Does The Timing Of The Fertigation Pulse Influence Nitrate Movement?

Right Place: Impact of Fertigation Timing on Nitrate Uptake by the Tree

Right Place: Impact of Fertigation Timing on Nitrate Uptake by the Tree

Each of these 8 images represents a 3-hour fertilizer injection event (day 0) that occurred during a 24 hour 1.5" irrigation event. This was followed by two additional irrigation only events on days 7 and 14 for 4.5" total. The image below represents nitrate in the profile at 21 days after the fertigation, prior to the subsequent fertigation.

Managing Nitrogen in Perennial Crops

Supply (Rate) (Amount and Timing) Demand Cover crops, Harvested nuts composts Husks, leaves, prunings removed from orchard Irrigation water Volatilization, Commercial N fertilizers denitrification from soil Fixation **Nutrients** Mineralized N in soil Organic matter Leaching Loss

Acknowledgements

- Patrick Brown Group
 - Patrick Brown
 - Blake Sanden
 - Sebastian Saa
 - Sebastian Castro
 - Sarah King
 - Francisco Valenzuela
 - Ignacio Sepulveda
 - Viviana Medina
 - Marta Perez Ortola
 - Saiful Muhammad
 - Assad Alam
 - Yuliya Karpach
 - Lan Le
 - Jan Hopmans Group
 - Jan Hopmans
 - Maziar Kandelous
 - Armen Malazian
 - Mike Mata

- Bruce Lampinen Group
 - Bruce Lampinem
 - Sam Metcalf
 - Loreto Contador
 - Louise Comas
- Ed Lewis Group
 - Ed Lewis
 - Andy Ross

CDFA-FREP Project 11-0462-SA